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Abstract
We introduce a new kind of continuous-variable-type entangled pure states,
called single-mode excited entangled coherent states (SMEECSs), which are
obtained through actions of a creation operator of a single-mode optical
field on the ECSs. We study the mathematical properties and entanglement
characteristics of the SMEECSs, and investigate the influence of photon
excitations on quantum entanglement. It is shown that the SMEECSs form
a type of cyclic representation of the Heisenberg–Weyl algebra. It is found
that the photon excitations seriously affect the entanglement character of the
SMEECSs. We also show how such states can be produced by using cavity
QED and quantum measurements.

PACS numbers: 03.65.Ud, 03.67.Hk, 03.67.Lx

1. Introduction

Quantum state superposition and entanglement can be used to process information in non-
classical ways. Entanglement is a direct consequence of the superposition principle of
quantum states applied to composite systems. An essential feature of quantum entanglement
is that a measurement performed on one part of the system determines the state of the other,
whatever the distance between them. For decades, quantum entanglement has been the focus
of much work in the foundations of quantum mechanics, being particularly with quantum non-
separability, the violation of Bell’s inequalities, and the so-called Einstein–Pololsky–Rosen
(EPR) paradox. Beyond this fundamental aspect, creating and manipulating of entangled states
are essential for quantum information applications. Among these applications are quantum
computation [1, 2], quantum teleportation [3, 4], quantum dense coding [5, 6], quantum
cryptography [7], and quantum positioning and clock synchronization [8]. Hence, quantum
entanglement has been viewed as an essential resource for quantum information processing.

In recent years, much attention has been paid to continuous variable quantum information
processing [9–23] in which continuous-variable-type entangled pure states play a key role.
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For instance, two-state entangled coherent states (ECS) are used to realize efficient quantum
computation [10] and quantum teleportation [11]. Two-mode squeezed vacuum states have
been applied to quantum dense coding [12]. In particular, following the theoretical proposal
of [13], continuous variable teleportation has been experimentally demonstrated for coherent
states of a light field [14] by using entangled two-mode squeezed vacuum states produced by
parametric down-conversion in a sub-threshold optical parametric oscillator. Therefore, it is
an interesting topic to create and apply continuous-variable-type entangled pure states. On
the other hand, a coherent state is the simplest continuous-variable state which is the closest
analogue to a classical light field and exhibits a Poisson photon number distribution. Coherent
states possess well defined amplitude and phase, whose uncertainties are the minimum
permitted by the Heisenberg uncertainty principle. Based on coherent states, two types of
continuous-variable states, called photon-added coherent states [24] and entangled coherent
states [25], have been introduced and shown to have wide applications in both quantum physics
[26] and quantum information processing [10, 11, 23, 27].

The purpose of this letter is to introduce a new kind of continuous-variable entangled
states on the basis of coherent states, called single-mode excited entangled coherent states
(SMEECSs), which are obtained through actions of a creation operator of a single-mode
optical field on the ECSs. We shall study the mathematical properties and entanglement
characteristics of SMEECSs, and investigate the influence of photon excitations on quantum
entanglement. This letter is organized as follows. In section 2, we present the SMEECSs
under our consideration. In section 3, we calculate the amount entanglement and analyse
entanglement character for the SMEECSs. In section 4, we show how to produce the SMEECSs
through laser–atom interactions and quantum measurement. We shall conclude this letter with
discussions and remarks in the last section.

2. Single-mode excited entangled coherent states

In this section, we present the form of the SMEECSs and discuss their mathematical properties.
We begin with the following two-mode ECSs:

|�±(α, 0)〉 = N±(α, 0)(|α, α〉 ± |−α,−α〉), (1)

where |α, α〉 = |α〉 ⊗ |α〉 with |α〉 = D(α)|0〉 being the usual Glauber coherent state defined
by the action of the displacement operator D(α) = exp(αâ† − α∗â) upon the vacuum state
|0〉. The normalization constants are given by

N−2
± (α, 0) = 2[1 ± exp(−4|α|2)]. (2)

For convenience, we denote the first and second modes in two-mode ECSs given by
equation (1) by modes a and b, respectively. Then we consider m-photon excitations of the
single mode a in the ECSs, and introduce the SMEECSs defined by

|�±(α,m)〉 = N±(α,m)â†m(|α, α〉 ± |−α,−α〉), (m �= 0). (3)

It is straightforward to calculate the normalization constants equation (3). We find them to be

N−2
± (α,m) = 2m![Lm(−|α|2) ± e−2|α|2Lm(|α|2)], (m �= 0) (4)

where Lm(x) is the Laguerre polynomial of order m defined by

Lm(x) =
m∑

n=0

(−1)nm!xn

(n!)2(m − n)!
. (5)

In the derivation of the equation (4), we have used the following expressions:

〈α|âmâ†m|α〉 = m!Lm(−|α|2), 〈α|âmâ†m|−α〉 = m!Lm(|α|2), (m �= 0). (6)
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Making use of the following expression,

â†m|α, α〉 = e−|α|2
∞∑

r,s=0

√
(r + m)!

r!
√

s!
αr+s |r + m, s〉, (7)

we can obtain the number-state representation of SMEECSs as follows:

|�±(α,m)〉 = N±(α,m) e−|α|2
∞∑

r,s=0

√
(r + m)!

r!
√

s!
αr+s[1 ± (−1)r+s]|r + m, s〉, (8)

which implies that the SMEECSs |�±(α,m)〉 are two truncations of the two-mode ECS given
by equation (1) with respect to the mode a, in which all the terms related to the Fock states of
the mode a: |0〉, |1〉, |2〉, . . . , |m − 1〉 are removed.

If we introduce the following normalized states with respect to the mode a,

|d(±α,m)〉 = d(α,m)â†m| ± α〉

= d(α,m)

m∑

p=0

m!

(m − p)!
√

p!
(±α∗)m−pD(±α)|p〉, (9)

which is a superposition state of m displaced number states with the normalized coefficients
given by

d−2(α,m) = m!Lm(−|α|2). (10)

Then the SMEECSs |�±(α,m)〉 in terms of four normalized states can be written as

|�±(α,m)〉 = N±(α,m)d−1(α,m)[|d(α,m)〉 ⊗ |α〉 ± |d(−α,m)〉 ⊗ |−α〉]. (11)

It is interesting to note that the SMEECSs |�±(α,m)〉 are eigenstates of the 2k-th power
of the annihilation operator of the mode b with eigenvalues α2k ,

b̂†2k|�±(α,m)〉 = α2k|�±(α,m)〉, (k = 1, 2, 3, . . .), (12)

which means that the set of the SMEECSs {|�±(α,m)〉} forms a kind of representations of the
Heisenberg–Weyl algebra spanned by b̂†, b̂, and b̂†b̂, we call it the excited ECS representation.
{|�+(α,m)〉} and {|�−(α,m)〉} are the two subspaces of the representation. It can be shown
that each subspace of the representation may be transformed to another by the actions of the
odd-number power of the annihilation operator b̂,

b̂†2k+1|�+(α,m)〉 = α2k+1N+(α,m)N−1
− (α,m)|�−(α,m)〉,

b̂†2k+1|�−(α,m)〉 = α2k+1N−(α,m)N−1
+ (α,m)|�+(α,m)〉, (13)

which implies that the excited ECS representation is a type of cyclic representation [28, 29].
The orthogonality relations of the representation can be written as

〈�±(α,m)|�±(β, n)〉 = N±(α,m)N±(β, n)[〈α|β〉Amn(α, β) + 〈−α|−β〉Amn(−α,−β)

±〈α|−β〉Amn(α,−β) ± 〈−α|β〉Amn(−α, β)], (14)

〈�±(α,m)|�∓(β, n)〉 = N±(α,m)N∓(β, n)[〈α|β〉Amn(α, β) ∓ 〈α|−β〉Amn(α,−β)

±〈−α|β〉Amn(−α, β) − 〈−α|−β〉Amn(−α,−β)], (15)

where 〈α|β〉 = exp[−(|α|2 + |β|2)/2 + α∗β], and we have introduced

Amn(α, β) = 〈α|âmâ†n|β〉. (16)
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3. The amount of entanglement of the SMEECS

In this section we calculate the amount of entanglement of the SMEECSs and investigate the
influence of the single-mode photon excitations on the entanglement of the SMEECSs. From
equation (11), we can see that the SMEECSs are two-component entangled states. The degree
of quantum entanglement of the two-state entangled states can be measured in terms of the
concurrence [15, 27, 30] which is generally defined for discrete-variable entangled states to
be [30]

C = |〈�|σy ⊗ σy |�∗〉|, (17)

where |�∗〉 is the complex conjugate of |�〉. The concurrence equals one for a maximally
entangled state.

For continuous-variables-type entangled states like (11), we consider a general bipartite
entangled state

|ψ〉 = µ|η〉 ⊗ |γ 〉 + ν|ξ 〉 ⊗ |δ〉, (18)

where |η〉 and |ξ 〉 are normalized states of subsystem 1 and |γ 〉 and |δ〉 normalized states
of subsystem 2 with complex µ and ν. After normalization, the bipartite state |�〉 can be
expressed as

|�〉 = 1

N
[µ|η〉 ⊗ |γ 〉 + ν|ξ 〉 ⊗ |δ〉], (19)

where the normalization constant is given by

N2 = |µ|2 + |ν|2 + 2 Re(µ∗νp1p
∗
2), p1 = 〈η|ξ 〉, p2 = 〈δ|γ 〉. (20)

Through transforming continuous-variables-type components to discrete orthogonal basis
and making use of a Schmidt decomposition [31], one can find the concurrence of the entangled
state (19) to be [15, 32]

C = 2|µ||ν|
N2

√
(1 − |p1|2)(1 − |p2|2). (21)

For the case of the no-photon excitation ECSs (i.e., m = 0), making use of equations (1)
and (2) from equations (19)–(21), we can find that the concurrence is given by

C−(α, 0) = 1, C+(α, 0) = 1 − e−4|α|2

1 + e−4|α|2 , (22)

which implies that the degree of entanglement of the ECS |�−(α, 0)〉 is independent of the
state parameter α, and it is a maximally entangled state while the amount of entanglement of
the ECS |�+(α, 0)〉 is less than that of the ECS |�−(α, 0)〉, but it increases with the values
of the state parameter α. In figure 1, we plot the concurrence C+(α, 0) for different values
of |α|2. From figure 1 we can see that the concurrence C+(α, 0) increases with |α|2, and the
state |�+(α, 0)〉 approaches the maximally entangled coherent state with C+(α, 0) ≈ 1 for the
strong filed case of the large |α|2.

When there exist photon excitations ,i.e., m �= 0, the SMEECS is given by equation (11).
From equations (20) and (21), we find the corresponding concurrence to be

C−(α,m) =
[(

1 − e−4|α|2)(L2
m(−|α|2) − L2

m(|α|2))]1/2

L2
m(−|α|2) − e−2|α|2L2

m(|α|2) , (23)

C+(α,m) =
[(

1 − e−4|α|2)(L2
m(−|α|2) − L2

m(|α|2))]1/2

L2
m(−|α|2) + e−2|α|2L2

m(|α|2) . (24)
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Figure 1. The concurrence of the SMEECS |�+(α, m)〉 versus |α|2 for the different photon
excitations with m = 0, 1, 2, 3, 5, 10, and 20, respectively.
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Figure 2. The concurrence of the SMEECS |�+(α, m)〉 versus |α|2 for the different photon
excitations with m = 0, 1, 2, 3, 5, 10, and 20, respectively.

In order to observe the influence of the photon excitations on the quantum entanglement
of the SMEECS |�+(α,m)〉 for different strength regimes of the optical fields, we plot the
concurrence C+(α,m) for different values of |α|2 and different photon excitation number m in
figure 1. Figure 1 indicates that the SMEECS has different entanglement characters in different
strength regimes of the optical fields. From figure 1, we can see the concurrence curve of
each SMEECS |�+(α,m)〉 (m �= =0) exhibits a peak. These peaks move to the left-hand
side with increasing the photon excitation number m while the height of the peaks decreases
with increasing m. On the left-hand side of the peak, the concurrence rises with increasing the
optical strength |α|2; however, on the right-hand side of the peak, the concurrence decreases
with increasing |α|2. In the weak field regime, the concurrence of the SMEECS exhibits an
interesting characteristic. In order to see this, in figure 2 we plot the concurrence C+(α,m) in
the weak field regime of |α|2 < 0.03 for different photon excitation number m, it can be seen
that the concurrence increases with the photon excitation number m, and linearly enhances
with the strength of the optical fields |α|2. These results can be confirmed analytically. In fact,
in the weak field regime of |α|2 < 0.03, from equation (24), we can obtain an approximate
analytic expression of the concurrence C+(α,m) ≈ √

m|α|2. From figure 1 and figure 2 we can
see that in the intermediate field regime entanglement character of the SMEECS |�+(α,m)〉
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Figure 3. The concurrence of the SMEECS |�−(α, m)〉 versus |α|2 for the different photon
excitations with m = 0, 1, 2, 3, 5, 10, and 20, respectively.

is more complex than that in the other regimes. In the strong filed regime, figure 1 shows that
the concurrence of the no-excitation ECS |�+(α, 0)〉 enhances with |α|2, and it approaches its
maximal value 1 when |α|2 tends the infinity. However, the SMEECS exhibits a quite different
character since the concurrence of the SMEECS does decrease with |α|2 in the strong filed
regime. Especially, the concurrence tends to zero when |α|2 → ∞.

Then we numerically investigate the entanglement properties of the SMEECHS
|�−(α,m)〉. We plot the concurrence C−(α,m) for different values of |α|2 and different
photon excitation number m in figure 3. From figure 3 we can see that the entanglement
character of the SMEECS |�−(α,m)〉 with photon excitations (m �= 0) is quite different that
of the ECS without photon excitation (m = 0). The concurrence of the ECS |�−(α, 0)〉 is
independent of the strength |α|2. However, the concurrence of the former is dependent of the
strength |α|2, and it decreases with increasing the number of the photon excitations m and |α|2.
This implies that the photon excitations suppress the entanglement amount of the SMEECS
|�−(α,m)〉.

4. Generation of the SMEECSs

In the previous sections we have seen interesting mathematical and entanglement properties
of the SMEECSs. The question now arises of how such states can be generated in practice. In
what follows, we present a possible scheme to produce them from the two mode ECSs through
atom–field interaction.

Consider an interaction between a two-level atom with a cavity field. The atom makes
a transition from the excited state |e〉 to the ground state |g〉 by emitting a photon. In the
interaction picture, the Hamiltonian of resonant interaction is given by

Ĥ = σ̂+â + g∗σ̂−â†, (25)

where σ̂+ and σ̂− are the Pauli operator corresponding to the two-level atom, â† and â are the
creation and annihilation operator of the field mode a, g is the coupling constant.

Suppose that the atom is initially in the excited state and the two filed modes is initially in
the two-mode ECS given by equation (1), but only the mode a interacts with the atom. Then,
for the weak coupling case, the state of the atom–field system at time t can be approximated
by

|ψ(t)〉 ≈ |�±(α, 0)〉 ⊗ |e〉 − iĤ t |�±(α, 0)〉 ⊗ |e〉, (26)
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which is approximately valid for interaction times such that gt � 1. Making use of
equation (24), one can reduce (26) to

|ψ(t)〉 ≈ |�±(α, 0)〉 ⊗ |e〉 − i(g∗t)â†|�±(α, 0)〉 ⊗ |g〉, (27)

which indicates that if the atom is detected to be in the ground state |g〉, then after normalization
the state of the two optical fields is reduced to the SMEECS |�+(α, 1)〉 given by equation (3).
If we consider a succession of m atoms through the cavity and if we detect all the atoms in
the ground state |g〉, then the state of the two optical fields is reduced to the desired state,
the SMEECS with m-photon excitations. Hence, we can, in principle, produce the SMEECS
|�±(α,m)〉.

5. Concluding remarks

We have introduced the SMEECSs through actions of a creation operator of a single-mode
optical field on the ECS. We have investigated the mathematical properties and entanglement
characteristics of the SMEECSs, and discussed the influence of photon excitations on quantum
entanglement. We have also shown how such states can be produced in the laser–atom
interaction by using cavity QED and quantum measurements. It has been shown that the
SMEECSs form a new type of cyclic representation of the Heisenberg–Weyl algebra, i.e., the
excited entangled-state representation. It has been found that the photon excitations affect
seriously entanglement character of the SMEECSs in the weak field case. We have observed
the much rich entanglement properties of the SMEECSs. It has been found that, in most cases,
the photon excitations lead to the decrease of the entanglement amount of the SMEECSs.
However, we have found that, in the weak field regime, the photon excitations may enhance
the amount of entanglement for the SMEECS |�−(α,m)〉. This provides us with a new
entanglement resource which can be applied not only to quantum information processing with
continuous variables [9] such as quantum teleportation of photon-added coherent-state-type
quantum states [24] and quantum cryptography, but also to studies of fundamental problems
such as quantum non-locality and violation of Bell inequalities. Indeed, a further investigation
on non-classical characters of the SMEECSs and their applications to quantum information
processing would be interesting, but it is beyond the scope of the present paper. We will
discuss them elsewhere.
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